Search
Close this search box.
Search
Filters:
NameProjectTypeCompare
Budapest, Kazán ENERGY4ALL PED Lab Compare
Stavanger, PED Hillevåg ENERGY4ALL PED Case Study Compare
Budapest, District IV ASCEND – Accelerate poSitive Clean ENergy Districts, ENERGY4ALL PED Relevant Case Study Compare
Rome, Quarticciolo ENERGY4ALL PED Lab Compare
Winterthur, WinLab PERSIST PED Lab Compare
Luzern Living Lab, Wesemlin-Dreilinden PERSIST PED Lab Compare
Iruña-Pamplona, Rochapea, Navarra PERSIST PED Relevant Case Study / PED Lab Compare
Hradec Králové, Kukleny RESPED – Enabling Energy Resilience through new energy flexible and affordable PED concepts PED Case Study Compare
Thessaloniki, Residential buildings FLEdge PED Relevant Case Study Compare
Kavala, Offices in University premises FLEdge PED Relevant Case Study Compare
Sofia, Offices and Premises in university FLEdge PED Relevant Case Study Compare
The city of Carcavelos, Portugal CSP – Cascais Smart Pole PED Relevant Case Study Compare
Verdal Kommune, Trøndelag PERSIST PED Case Study Compare
Cluj-Napoca, UTCN Dormitories PERSIST PED Lab Compare
Alba Iulia, Social blocks, str. Marcus Aurelius PERSIST PED Lab Uncompare
Leeuwarden/de Zwette PED Lab Compare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Uncompare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Uncompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleBorlänge, Rymdgatan’s Residential Portfolio
Pamplona
Kifissia, Energy community
Espoo, Kera
Romania, Alba Iulia PED
Åland, Smart Energy Åland
Alba Iulia, Social blocks, str. Marcus Aurelius
Findhorn, the Park
Tartu, Annelinn
Freiburg im Breisgau, Dietenbach
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabBorlänge, Rymdgatan’s Residential PortfolioPamplonaKifissia, Energy communityEspoo, KeraRomania, Alba Iulia PEDÅland, Smart Energy ÅlandAlba Iulia, Social blocks, str. Marcus AureliusFindhorn, the ParkTartu, AnnelinnFreiburg im Breisgau, Dietenbach
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesyesnoyesnono
PED relevant case studyyesnoyesyesnonononoyesyes
PED Lab.noyesnonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyesyesyes
Annual energy surplusyesnononoyesnonoyesnono
Energy communityyesyesyesnoyesnoyesyesyesno
Circularitynononoyesnononoyesnono
Air quality and urban comfortnonoyesnoyesnoyesnonono
Electrificationyesnoyesnoyesnonoyesyesno
Net-zero energy costnononononononononono
Net-zero emissionnononononononoyesnono
Self-sufficiency (energy autonomous)nonononoyesyesnononono
Maximise self-sufficiencyyesnononoyesnoyesyesnono
Othernononononoyesnononoyes
Other (A1P004)Energy efficient; Carbon free; Sustainable neighbourhoodSustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation PhaseIn operationPlanning PhaseIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/2401/1501/2401/1412/2401/6212/2301/12
A1P007: End Date
A1P007: End date07/2812/3512/2611/2611/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
A1P011: Geographic coordinates
X Coordinate (longitude):15.394495-1.6432323.81458824.7537777823.58011209802323519.943863823.56968-3.609926.74817.795476
Y Coordinate (latitude):60.48660942.8168738.07734960.2162222246.07701527868011560.216621846.0789657.653058.370848.006157
A1P012: Country
A1P012: CountrySwedenSpainGreeceFinlandRomaniaFinlandRomaniaUnited KingdomEstoniaGermany
A1P013: City
A1P013: CityBorlängePamplonaMunicipality of KifissiaEspooAlba IuliaÅlandAlba IuliaFindhornTartuFreiburg im Breisgau
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DsbCfbCsaDfbDfbDfbDfbDwcDfbCfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicVirtualGeographicFunctionalFunctionalGeographicGeographicGeographic
OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicMixedPublicMixedPublicPublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED106160
A1P019: Conditioned space
A1P019: Conditioned space [m²]3700
A1P020: Total ground area
A1P020: Total ground area [m²]9945235500005800008423.451800005400000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0000000000
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenononononononoyesnono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononononononononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesyesyesnonono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnonononoyesyesnoyesyesno
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnoyesnonono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyesyesyesnonono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononononononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnononononononoyesnono
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Positive externalities,
  • Other
  • Job creation,
  • Other
A1P023: OtherCircular economyBoosting sustainability for public schoolsTourism development
A1P024: More comments:
A1P024: More comments:Social blocks complex from Alba Iulia, includes 3 identical blocks (ground floor + 4 floors) constructed in 2013. Blocks have a reinforced concrete structure, autoclaved aerated concrete bricks for walls, 10 cm insulation and double blazed windows/ doors. Each block has 25 apartments and is hosting about 70 tenants. Blocks are connected to electricity (3 x 400 Vac, 50 Hz), water and gas networks. Heating is ensured by one 100 kW boiler (one is also back-up) for each block, and DHW by boiler and a 24-panel solar thermal system (tube/ heat – pipe model). Each apartment has analogue (manual readings) meters (electricity, gas, cold/ hot water, heating). Tenants are paying directly gas and electricity to distribution companies, and through association and meters, water, hot water and heating. As tenants are in many cases social cases, energy costs are of high importance and impact. As solar thermal systems were not working anymore, based on an Interreg project pilot (Social Green, 2022) the thermal solar system for hot water was refurbished, together with main components and storage/ exchange tank, but just for the first block, which was also a case for testing smart home system in few apartments and subject to a monitoring system (Innovation Norway Doitsmarter project; meters for gas consumption, energy production by boilers and solar system and electricity consumed at power plant level). Refurbished solar system demonstrated an important contribution for providing hot water (> 30%/ year) and monitoring revealed possible further optimisation. Currently, is important to refurbish the thermal solar systems in the rest of 2 blocks and to include monitoring systems at least at power plants level. Other solutions, including PV systems (about 10 kW/ block, considering the available roof surface), or heat pumps can be analysed. Energy community can be considered directly for each block and for the complex, but considering the technical restrains, possible supplementary production of energy especially during summer, can be considered just for electricity, in case of installing PV systems.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
Contact person for general enquiries
A1P026: NameJingchun ShenOscar Puyal LAtorreArtemis Giavasoglou, Kleopatra KalampokaJoni MäkinenTudor DrâmbăreanChristoph GollnerMaria SeemannStefano NebioloDr. Gonçalo Homem De Almeida Rodriguez CorreiaChristoph Gollner
A1P027: OrganizationHögskolan DalarnaEndef Engineering SLMunicipality of Kifissia – SPARCS local teamCity of EspooMunicipality of Alba IuliaFFGAlba Iulia MunicipalityFindhorn Innovation Research and Education CICDelft University of TechnologyFFG
A1P028: AffiliationResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOther
A1P028: OtherMaria Elena Seemann
A1P029: Emailjih@du.seoscar.puyal@endef.comgiavasoglou@kifissia.grjoni.makinen@espoo.fitudor.drambarean@apulum.rochristoph.gollner@ffg.atmaria.seemann@apulum.rostefanonebiolo@gmail.comg.correia@tudelft.nlchristoph.gollner@ffg.at
Contact person for other special topics
A1P030: NameXingxing ZhangStavros Zapantis - vice mayorMaria-Elena SeemannQiaochu Fan
A1P031: Emailxza@du.sestavros.zapantis@gmail.commaria.seemann@apulum.roapulq.fan-1@tudelft.nl
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Construction materials
  • Energy efficiency
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.)
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies
  • Energy efficiency,
  • Energy production,
  • Indoor air quality
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.677754.50.9820.2
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0365619.40.0484410.051.2
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]0
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]00.002
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnonoyesyesyesyesnoyesnono
A2P011: PV - specify production in GWh/annum [GWh/annum]4
A2P011: Windnononononoyesnoyesnono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononononononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elyesnonononononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
A2P011: Othernononononononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnononononononononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnononononoyesnoyesnono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnononononononoyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnononoyesnononoyesnono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thyesnonononononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
A2P012: Biomass_firewood_thnononononononoyesnono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononoyesnonononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Only PVs - 940 PVs on the main building3x225 kW wind turbines + 100 kW PV
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.31878.80.0000484411.2
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]0.205515.40.0001133311.2
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononononononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Otheryesnononoyesnonononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononononononononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononononononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononononononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Otheryesnononoyesnonononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononononononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononononononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononononononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Otheryesnononoyesnonononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0.53839572192513000000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93450000
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Securitynoneyes
A2P022: Healththermal comfort diagramyes
A2P022: Educationnoneyes
A2P022: MobilitynoneyesImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
A2P022: Energynormalized CO2/GHG & Energy intensityyesRES energy producedTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
A2P022: Wateryes
A2P022: Economic developmentcost of excess emissionsyesDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
A2P022: Housing and CommunityNumber of people interested in participating in an energy communityOperational costs
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesnoyesyesyesyesyesyesyes
A2P023: Solar thermal collectorsyesnononoyesyesyesyesnoyes
A2P023: Wind Turbinesnononononoyesnoyesyesno
A2P023: Geothermal energy systemyesnonononoyesnononono
A2P023: Waste heat recoveryyesnonoyesnononoyesnono
A2P023: Waste to energynononononononononono
A2P023: Polygenerationnonononoyesnonononono
A2P023: Co-generationnonononoyesnonononono
A2P023: Heat Pumpyesnonoyesyesnonoyesnoyes
A2P023: Hydrogennononononononononono
A2P023: Hydropower plantnononononononononono
A2P023: Biomassnononononononoyesnono
A2P023: Biogasnononononononononono
A2P023: OtherWave
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesyesyesnononono
A2P024: Energy management systemnononoyesyesnoyesyesyesno
A2P024: Demand-side managementnononoyesyesnononoyesno
A2P024: Smart electricity gridnononoyesyesyesnonoyesno
A2P024: Thermal Storageyesnononononoyesyesnoyes
A2P024: Electric Storagenonononoyesyesnoyesyesno
A2P024: District Heating and Coolingyesnonoyesnononoyesnono
A2P024: Smart metering and demand-responsive control systemsnoyesnonoyesnonononono
A2P024: P2P – buildingsnonononoyesnonononono
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesnononoyesnoyesnoyesno
A2P025: Energy efficiency measures in historic buildingsnononononononononono
A2P025: High-performance new buildingsnononoyesnononoyesnono
A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnononoyesno
A2P025: Urban data platformsnononoyesyesnoyesnoyesno
A2P025: Mobile applications for citizensnononononononononono
A2P025: Building services (HVAC & Lighting)yesnonoyesyesnonononono
A2P025: Smart irrigationnononononononononono
A2P025: Digital tracking for waste disposalnononononononononono
A2P025: Smart surveillancenoyesnononononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)nononoyesyesyesnonoyesno
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesyesnononoyesyes
A2P026: e-Mobilitynononoyesyesyesnoyesyesno
A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononononono
A2P026: Car-free areanononononononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesNoNoYes
A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoYes
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC)
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.40% reduction in emissions by 2030 according to the Covenant of Mayors
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system
A3P006: Economic strategies
A3P006: Economic strategies
  • Open data business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Local trading
  • PPP models,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Existing incentives
  • Innovative business models,
  • Life Cycle Cost,
  • Demand management Living Lab
  • Innovative business models,
  • Local trading,
  • Existing incentives
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Affordability,
  • Digital Inclusion
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Prevention of energy poverty
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Prevention of energy poverty,
  • Digital Inclusion
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • District Energy plans,
  • Building / district Certification
  • Strategic urban planning,
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Sustainable Urban drainage systems (SUDS)
  • Greening strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Carbon-free
  • Low Emission Zone,
  • Greening strategies
  • Energy Neutral,
  • Net zero carbon footprint
  • Energy Neutral,
  • Low Emission Zone,
  • Nature Based Solutions (NBS)
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Positive energy district
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaRuralSuburban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction
  • Renovation
  • New construction,
  • Renovation
  • New construction
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area,
  • Retrofitting Area
  • Re-use / Transformation Area
  • Retrofitting Area
  • Retrofitting Area
  • New Development
  • New Development
B1P006: Year of construction
B1P006: Year of construction19901976
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential100
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential10014000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential6
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential610000
B1P011: Population density before intervention
B1P011: Population density before intervention0000000000
B1P012: Population density after intervention
B1P012: Population density after intervention0.010658622423328000.041379310344828000000
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnonoyesnoyesnononono
B1P013 - Residential: Specify the sqm [m²]4360
B1P013: Officenononoyesnononononono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynononoyesnoyesnononono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononononoyesnononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononoyesnonononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnononononoyesnoyesnoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononononononononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononoyesnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Otheryesnonononononononono
B1P013 - Other: Specify the sqm [m²]706
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnonoyesnoyesnoyesnoyes
B1P014 - Residential: Specify the sqm [m²]4360
B1P014: Officenononoyesnononoyesnono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononononoyesnononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnononoyesnoyesnononono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononoyesnonononoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnononononoyesnoyesnoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnononoyesnononononono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Otheryesnonononononononoyes
B1P014 - Other: Specify the sqm [m²]706
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleCityDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED Lab
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
B2P015: Key Performance indicators
B2P015: Key Performance indicators
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Social acceptance (top-down)5 - Very important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Presence of integrated urban strategies and plans5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P002: Economic growth need4 - Important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P003: Lack of public participation3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P003: Lack of internal capacities to support energy transition5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term5 - Very important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities4 - Important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P005: Regulatory instability2 - Slightly important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P005: Non-effective regulations2 - Slightly important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers2 - Slightly important
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P007: Deficient planning4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Lack of well-defined process2 - Slightly important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P007: Grid congestion, grid instability5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia2 - Slightly important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P008: Lack of trust beyond social network5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
C1P008: Rebound effect4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P009: Lack of awareness among authorities5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P010: Economic crisis5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P010: Risk and uncertainty5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P010: Lack of consolidated and tested business models5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P010: Limited access to capital and cost disincentives5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P011: Energy price distortion4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
C1P012: Financial/Funding
  • None
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • None
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • None
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Urban Services providers
  • None
  • Planning/leading,
  • Construction/implementation
C1P012: Real Estate developers
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Monitoring/operation/management
  • Planning/leading
C1P012: Industry/SME/eCommerce
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Enerji)
Giulia Turci (University of Bologna / UNIBO, Cesena Municipality)
Michal Kuzmic (Czech Technical University in Prague / CTU)
Paolo Civiero (Università Roma Tre)
Vicky Albert-Seifried (Fraunhofer-Institut für Solare Energiesysteme / FHG ISE)
Bailador Ferreras M. Almudena (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas / CIEMAT)
Serena Pagliulia (University of Bologna / UNIBO)
Oscar Seco (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas / CIEMAT)
Silvia Soutullo (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas / CIEMAT)
Daniele Vettorato (EURAC Research / EURAC)

Contributors (to the content)

Laura Aelenei (Laboratório Nacional de Energia e Geologia / LNEG), Nienke Maas (Netherlands Organisation for applied scientific research / TNO), Savis Gohari (Oslo Metropolitan University / OsloMet), Andras Reith (Advanced Building and Urban Design / ABUD), Ghazal Etminan (Austrian Institute of Technology / AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT Technical Research Centre of Finland Ltd / VTT), Mari Hukkalainen (VTT Technical Research Centre of Finland Ltd / VTT), Judith-Borsboom (Locality), Gilda Massa (National Agency for New Technologies, Energy and Sustainable Economic Development / ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (Czech Technical University in Prague / CTU), Sergio Diaz de Garayo Balsategui (Centro Nacional de Energías Renovables / CENER, IEA Annex 83), Christoph Gollner (Austrian Research Promotion Agency / FFG, JPI UE), Silvia Bossi (National Agency for New Technologies, Energy and Sustainable Economic Development / ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science / ZHAW), George Martinopoulos (Centre for Research and Technology Hellas / CERTH), Maria Nuria Sánchez (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas / CIEMAT), Angelina Tomova (Energy Agency of Plovdiv), Xingxing Zhang (Dalarna University), Juveria Shah (Dalarna University), Mengjie Han (Dalarna University), Oya Tabanoğlu (Demir Enerji)

Implemented by

Boutik.ptFilipe Martins, Jamal Khan (2020-2023), Czech Technical University in Prague: Marek Suchánek (2023-2024)